Carbynes and Carbenes in Coordination Chemistry: A New Class of Pentaammine and Tetraammine Complexes of Osmium(II)

L. Mark Hodges, Michal Sabat, and W. Dean Harman^{*,1}

Department of Chemistry, University of Virginia, Charlottesville, Virginia 22901

Received October 28, 1992

Since their discovery by Fischer and co-workers in 1973,² the study of transition-metal carbyne complexes and their role in alkyne metathesis has rapidly developed into a mature field.³ Although carbyne complexes are known for a diverse set of earlyand mid-transition metals, the vast majority of these complexes contain carbon or phosphine π -acids, or bulky alkoxide ligands, which limit the coordination number. We wish to report the first example of a carbyne species, as well as several heteroatomcarbene derivatives, in which the metal fragment, Os¹¹(NH₃)₅,⁴ provides a classical octahedral coordination environment.

The carbyne $[Os(NH_3)_5(\equiv CPh)](OTf)_3$ (2) is synthesized in two steps from $Os(NH_3)_5(OTf)_3$ and benzaldehyde dimethyl acetal, as shown in Figure 1.⁵ Reduction of the Os(III) precursor with Mg⁰ in the presence of the acetal generates the complex $[Os(NH_3)_5(\eta^2-PhCH(OMe)_2](OTf)_2$ (1) in which the organic ligand is bound through the arene. ¹H NMR and cyclic voltammetric data are consistent with other η^2 -arene complexes of pentaammineosmium(II),⁶ the former indicating that the metal is fluxional on the NMR time scale. Treatment of 1 with 1 equiv of triflic acid in methanol yields the carbyne, 2, in 85–90% yield. ¹H and ¹³C NMR data (acetone- d_6) for 2 show phenyl and ammine signals, and a ¹³C resonance at 278 ppm, consistent with that reported for other carbyne carbons.³ No methoxy signals were detected in either the proton or carbon NMR. Crystals of 2 were obtained from acetone solution, and a structure determination

- (2) Fischer, E. O.; Kreis, G.; Kreiter, C. G.; Muller, J.; Huttner, G.; Lorenz, H. Angew. Chem., Int. Ed. Engl., 1973, 12, 564-5.
- (3) Nugent, W. A.; Mayer, J. A. Metal Ligand Multiple Bonds; Wiley Interscience: New York, 1988; pp 310-1.
- (4) In this paper we shall use the formalism Os(II)/CR⁺ and Os(II)/CR⁰ for carbyne and carbene complexes, respectively, as opposed to the equally acceptable formalism Os(VI)/CR³⁻ and Os(IV)/CR^{2⁻}. All cations reported are CF₃SO₃⁻ salts.
- (5) Synthesis of 1: Benzaldehyde dimethyl acetal (1.76 g, 11.5 mmol) and $[Os(NH_3)_5OTf]OTf_2 (0.685 g, 0.949 mmol) were dissolved in 3.0 g of N,N-dimethylacetamide (DMAc). Activated Mg⁰ powder (1.46 g) was added and the reaction mixture stirred. After 45 min, the solution was filtered into 150 mL of CH₂Cl₂. Addition of 200 mL of Et₂O caused the formation of a red precipitate, which was isolated, washed (Et₂O), and dried. Yield: 0.567 g (0.782 mmol, 82%). Characterization of 1 is as follows. CV (acetonitrile, TBAH, v = 100 mV/s): E_{p.a} = +0.60 V (NHE). ¹H NMR (acetone-d₆; 25 °C): 5.1-7.3 (br, 5H, Ph); 5.01 (s, 1H, CH); 3.40 (s, 6H, OMe); 4.73 (bs, 3H, trans-NH₃); 3.47 (bs, 12H, cis-NH₃). Synthesis of 2: Triflic acid (74.3 mg, 0.495 mmol) was dissolved in 2.15 g of MeOH. This solution was added directly to 1 (268 mg, 0.370 mmol) with stirring. After 5 min, Et₂O was added (15 mL), and the precipitate was filtered out, washed (Et₂O), and dried. Isolated yield: 258 mg (0.318 mmol, 86%). Characterization of 2 iso follows. CV (MeCN, TBAH, 100 mV/s): E_{p.c} = -0.87 V (NHE). ¹H NMR (acetone-d₆; 25 °C): 8.34 (d, 2H); 8.08 (t, 1H); 7.62 (t, 2H) (Ph); 5.73 (bs, 12H, cis-NH₃); 4.15 (bs, 3H, trans-NH₃). ¹³C NMR (acetone-d₆; 25 °C): 129.21, 132.39, 136.20, 146.22 (Ph); 277.96 (C=Os). Anal. Calcd (C₁₀H₂₀Ns₃F₉O₉Os): C, 14.80; H, 2.48; N, 8.63. Found: C, 14.2; H, 2.65; N, 8.87.$
- (6) (a) Harman, W. D.; Taube, H. J. Am. Chem. Soc. 1988, 110, 7555. (b) Harman, W. D.; Sekine, M.; Taube, H. J. Am. Chem. Soc. 1988, 110, 5725.
- (7) Crystals of 2 were grown from acetone by vapor diffusion of Et₂O into the solution. Crystallographic data are as follows: $C_{10}H_{20}F_0N_2O_8J_08\cdot 1.5$ (CH₃)₂CO; M = 898.78; triclinic, space group PI (No. 2); a = 13.337 (4) Å, b = 15.411 (3) Å, c = 8.346 (3) Å; $\alpha = 93.88$ (3)°, $\beta = 102.68$ (3)°, $\gamma = 114.35$ (2)°, V = 1505 (2) Å³; Z = 2, $d_{calcd} = 1.983$ cm³. The structure was solved by heavy-atom techniques using TEXAN 5.0. Full-matrix least-squares refinement yielded the final Rof 0.044 ($R_w = 0.053$) for 3941 absorption-corrected reflections with $I > 3\sigma(I)$ measured on a Rigaku AFC6S diffractometer up to $2\theta = 50^{\circ}$ (Mo K α radiation, $\lambda = 0.710$ 69 Å, T = -100 °C).

Figure 1. Schematic of the synthesis and reactivity of the osmium(II) pentaammine carbyne 2.

was undertaken.⁷ The ORTEP of $[Os(NH_3)_5(\equiv CPh)]^{3+}$ (Figure 2) features a nearly linear (175.3°) Os=CPh linkage, with the metal-carbon bond length of 1.73 (1) Å, and a significantly lengthened *trans*-NH₃ bond.

Although the pentaamminecosmium carbyne 2 is stable in acidic D_2O ,⁸ over several days in neutral solution 2, as well as the heterocarbene complexes 4 and 6, undergo conversion to a common product (3). Both ¹³C and ¹H NMR spectra of 3 are consistent with the formation of a carbyne species similar to 2 but with a hydroxy group replacing the ammine ligand trans to the carbyne.⁹ Repeated efforts to isolate 3 in analytically pure form have failed, but trace amounts of a crystalline material, formed from 2 in wet acetone solution, were analyzed by X-ray.¹⁰ Although somewhat disordered, a structure determination confirms the presence of one octahedral carbyne unit and two triflates, consistent with our formulation of 3 as $[Os(NH_3)_4(OH)(=CPh)](OTf)_2 \cdot 0.5(CH_3)_2CO$.

The carbyne 2 readily undergoes nucleophilic addition at the carbyne carbon to give heteroatom carbenes. Reaction of 2 with sodium methoxide in methanol gives the corresponding methoxycarbene, 4 (Figure 1), a species which most likely is an intermediate in the conversion of the benzaldehyde dimethyl acetal

(10) Unit cell for 3: $P\overline{1}$ (No. 2), a = 10.779 (3) Å, b = 14.625 (5) Å, c = 8.366 (2) Å, $\alpha = 98.97$ (2)°, $\beta = 97.50$ (2)°, $\gamma = 111.06$ (2)°, V = 1190 (6)Å³. R = 0.043 ($R_w = 0.058$). Os=C = 1.74 (1)Å. The phenyl ring was found to be disordered between two different orientations. An ORTEP drawing and structural parameters of 3 are available as supplementary material. Consistent with the interpretation of 3 as a hydroxy carbyne, the metal-ligand bond trans to the carbyne unit (i.e. the O-Os bond) is significantly shorter (2.121 (7) Å) than the corresponding Os-N bond of 2 (2.245 (8) Å).

^{(1) 1992} Camille and Henry Dreyfus Teacher-Scholar.

^{(8) &}lt;sup>1</sup>H NMR of 2 in D₂O (0.08 M HOTf): 7.58 (t, 2H); 7.96 (d, 2H); 8.06 (t, 1H); 5.43 (bs, 12H); 3.78 (bs, 3H).
(9) Characterization of 3 is as follows. ¹H NMR (D₂O): 7.95 (t, 1H); 7.86

 ⁽⁹⁾ Characterization of 3 is as follows. ¹H NMR (D₂O): 7.95 (t, 1H); 7.86 (d, 2H); 7.56 (t, 2H). ¹³C NMR (D₂O): 129.47, 130.32, 135.07, 146.30 (Ph); 267.92 (C≡Os).

Figure 2. ORTEP for the cation $[Os(NH_3)_5(=CPh)]^{3+}$ (2). Selected bond distances (Å) and angles (deg): C1-Os = 1.73 (1), C1-C2 = 1.45(1), Os-N1 = 2.245 (8), Os-N2 = 2.142 (8), Os-N3 = 2.131 (8), Os-N4 = 2.125 (8), Os-N5 = 2.138 (8); Os-C1-C2 = 175.3 (8), N1-Os-C1 = 177.2 (4).

(1) to the carbyne (2).¹¹ Consistent with this interpretation, the carbyne 2 can be regenerated by treatment of 4 with a methanolic solution of triflic acid.

The reaction of the carbyne 2 in acetonitrile with 1 equiv of the nonhindered amine *n*-propylamine gives *trans*-[Os- $(NH_3)_4(=C(NHPr)Ph)(CH_3CN)](OTf)_2$ (5) (Figure 1).¹² In this case, the ammonia trans to the carbene is labile and acetonitrile is readily incorporated. When the the carbyne (2) is treated with 1 equiv of the hindered base Proton Sponge, the liberated ammonia ligand serves as the nucleophile for unreacted 2, and *trans*-[Os(NH₃)₄(=C(NH₂)Ph)(CH₃CN)](OTf)₂ (6) is generated in good yield.¹³ The crystal structure for 6 (Figure 3)¹⁴ reveals bond lengths and angles (summarized in the legend) about the carbene which are typical for Fisher carbenes, and ¹H NMR data recorded at room temperature show two resolved resonances for the amino group. However, coalescence experiments show the rotational barrier of the amino group to be only 16.5 kcal/ mol, a value which is considerably less than that for typical Fischer aminocarbenes¹⁵ and which suggests that the majority of π electron

Figure 3. ORTEP for the cation *trans*- $[Os(NH_3)_4(=C(NH_2)Ph)-(CH_3CN)]^{2+}$ (6). Selected bond distances (Å) and angles (deg): C2-C1 = 1.48 (1), C1-Os = 1.96 (1), C1-N1 = 1.32 (1), Os-N6 = 2.11 (1), N6-C8 = 1.16 (1), C8-C9 = 1.46 (1), C2-C1-Os = 121.0 (1), N1-C1-Os = 127.4 (8).

density in the heteroatom-carbene system is confined to the M–C bond. While the trans acetonitrile is resistant toward substitution in acetone, rapid exchange ($t_{1/2} < 1 \text{ min}$) is observed by ¹H NMR in CD₃CN. Cyclic voltammograms of the Os(II) aminocarbenes 5 and 6 show reversible couples ($E_{1/2} = +0.34$ V; 50 mV/s) in CH₃CN, an observation which indicates that the Os(III)-carbene analogs to 5 and 6 are also modestly stable.

The carbyne 2 fails to react with 2-pentyne (75 °C; CH₃CN) over several hours, and the aminocarbene 6 is equally impotent with norbornene under these conditions. However, given the ease with which ligands may be substituted in a position trans to the carbon, the accessibility of the Os(III) oxidation state, and the simplicity of the ancillary ligands, these osmium(II) ammine complexes offer a new perspective for the study of carbene and carbyne species.

Acknowledgment is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society (PRF No. 23361-G), the University of Virginia, the Thomas F. and Kate Miller Jeffress Memorial Trust (J-206), the Camille and Henry Dreyfus Foundation, and Catalytica (Mountain View, CA) for their generous support of this work.

Supplementary Material Available: Tables of experimental details, atomic positional parameters, thermal parameters, and bond distances and angles and ORTEP drawings for 2, 3, and 6 (25 pages). Ordering information is given on any current masthead page.

 ⁽¹¹⁾ Characterization of 4 is as follows. CV (MeCN, TBAH, 50 mV/s): *E*_{1/2} = +0.65 V (NHE). ¹H NMR (acetone-d₆, 25 °C): 7.42 (t, 2H); 7.21 (t, 1H); 7.11 (d, 2H), 4.00 (bs, 12H, cis-NH₃), 4.05 (bs, 3H, trans- NH₃), 3.55 (s, OMe). ¹³C NMR (acetone-d₆, 25 °C): 246.90 (C=Os); 157, 128.75, 126.68, 118.38 (Ph); 58.56 (OMe).

⁽¹²⁾ Characterization of 5 is as follows. ¹H NMR (acetone-d_b): 8.78 (bs, 1H, NH); 7.44 (t, 2H); 7.12 (t, 1H); 6.93 (d, 2H), 3.52 (bs, 12H, cis-NH₃); 2.96 (dt, 2H); 1.52 (m, 2H); 0.78 (t, 3H) (Pr), 2.77 (s, 3H, MeCN). ¹³C NMR (acetone-d₆, 25 °C): 235.37 (C=Os); 154.16, 129.23, 125.88, 119.59 (Ph); 54.40, 23.48, 11.12 (Pr); 3.66 (ligated MeCN, quat carbon unassigned).

⁽¹³⁾ Synthesis of 6: A solution of Proton Sponge (65.4 mg, 0.306 mmol) in acetonitrile (1.37 g) was added to 2 (204.1 mg, 0.251 mmol). After 5 min, the red/brown solution was added to CH₂Cl₂ (60 mL), and the precipitate was isolated, washed (CH₂Cl₂/Et₂O), and dried. Isolated yield: 153.1 mg, 0.218 mmol, 87%. Characterization of 6 is as follows. ¹H NMR (acetone-d₆, 25 °C): 9.09 (bs, 1H), 8.66 (bs, 1H) (NH₂); 7.36 (t, 2H); 7.18 (t, 1H); 7.08 (d, 2H), 3.62 (bs, 12H, cis-NH₃); 2.78 (s, 3H, MeCN). ¹³C NMR (acetone-d₆, 25 °C): 235.45 (C==Os); 158, 129.06, 126.61, 120.96 (Ph); 3.62 (ligated MeCN, quat carbon unassigned). IR: C=N stretch at 2268 cm⁻¹. Anal. Calc for *trans*-[Os(NH₃)₄(==C(NH₂)Ph)(MeCN]²⁺, C₁₁H₂₂N₅O₅S₂F₅Os: C, 18.80; H, 3.16; N, 11.96. Found: C, 17.65; H, 3.04; N, 11.31.

⁽¹⁴⁾ Crystals of 6 were grown from acetonitrile by vapor diffusion of Et₂O into the solution. Crystallographic data are as follows: $C_{11}H_{22}$: $F_6N_6O_6S_2Os\cdot CH_3CN$, M = 743.69; triclinic, space group PI (No. 2); a = 12.120 (5) Å, b = 14.831 (6) Å, c = 7.838 (3) Å; $\alpha = 103.99$ (4)°, $\beta = 106.07$ (3)°, $\gamma = 97.77$ (4)°, V = 1282 (2) Å³; Z = 2, $d_{calcd} = 1.926$ cm³. The structure was solved by heavy-atom techniques using TEXAN 5.0. Full-matrix least-squares refinement yielded the final R of 0.044 ($R_w = 0.062$) for 3729 absorption-corrected reflections with $I > 3\sigma(I)$ measured on a Rigaku AFC6S diffractometer up to $2\theta = 50^{\circ}$ (Mo K α radiation, $\lambda = 0.710$ 69 Å, T = -120 °C).

⁽¹⁵⁾ Fischer, H.; Kreissl, F. R. in *Transition Metal Carbene Complexes*; Verlag Chemie: Deerfield Beach, FL, 1983; p 71.